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Abstract. We consider an electron with an anomalous magnetic mogment2 confined to a

plane and interacting with a non-zero magnetic figlgerpendicular to the plane. We show that

if B has compact support and the magnetic flux in natural uni#s i& 0, the corresponding

Pauli Hamiltonian has at least 1 #] bound states, without making any assumptions about the
field profile. Furthermore, in the zero-flux case there is a pair of bound states with opposite spin
orientations. Using a Birman—Schwinger technigue, we extend the last claim to a weak rotationally
symmetric field withB(r) = O(r~27%), thus correcting a recent result. Finally, we show that under
mild regularity assumptions existence of the bound states can also be proved for non-symmetric
fields with tails.

1. Introduction

The interaction of electrons with a localized magnetic field has been a subject of interest for a
long time. It was observed recently that a magnetic flux tube can bind charged particles with
anomalous magnetic moment- 2. An example of such a particle is the electron, which has

g = 2.0023.

The effect was observed firstin simple examples [BV, CFC, Mo], such as a cylindrical tube
with a field which is either homogeneous or supported by the tube surface. The same behaviour
was then demonstrated for any rotationally invariant fiBl@) with compact support, and
which does not change sign [CC]. Inthe next step the symmetry condition was removed and the
positivity requirement weakened [BEZ2]. The main aim of the present paper is to complete this
process by showing that bound states exist for any (non-trivial) compactly supported field and
their number is controlled by the number of flux quanta: the corresponding Pauli Hamiltonian
will be shown to have at least 1 ¥] negative eigenvalues, whereis the value of the flux
through the tube in natural units.

This improvement is made possible by a pair of new tools. First of all, the supersymmetry
properties of the Pauli operators allow us to show that the matrix element of the field appearing

|| E-mail addressbentosela@cpt.univ-mrs.fr
€ E-mail addresstmoritz@fma.if .usp.br

* E-mail addressexner@ujf.cas.cz

* E-mail addresszagrebnov@cpt . univ-mrs.fr

0305-4470/99/163029+11$19.50 © 1999 IOP Publishing Ltd 3029



3030 F Bentosela et al

in the sufficient condition of [BEZ2] in fact has a definite sign. This trick will be combined with

a more sophisticated variational estimate, which enables us to treat the integer-flux situation
on the same footing as the other cases. In particular, we will be able to demonstrate in this
way that for a non-zer® a bound state due to an excess magnetic moment exists even if the
flux is zero. More than that, an analogous argument shows that in this situation the field binds
electrons withboth spin orientations.

While the proof of the last result requires a compact support and does not cover fields
with tails extending to infinity, it raises a question about a claim made in a recent paper by
some of us [BEZ1]. It was said there that a system with a particular rotationally symmetric
field induced by an electric current vortex has no bound states for weak currents. This is not
correct; the statement is true for higher partial waves only, while the s-wave part in reality has
a non-trivial spectrum for any non-zero current.

The error is subtle and—we hope—instructive: it illustrates well the fine nature of weakly
bound states of Scdinger operators in one and two dimensions. The point is that caution
is needed when the coupling is switched wdinlinearly. the case in question represents an
example of a two-dimensional S@dinger operator with a potential which hagasitive mean
for any non-zero coupling constant while still having a bound state.

To set things straight, in sections 4, 5 and 6 we discuss the weak field, zero-flux case
in detail by performing the corresponding Birman—Schwinger analysis to second order. For
centrally symmetric fields it yieldg > 2 as a sufficient condition for the existence of bound
states, and provides an asymptotic formula for the bound-state energy. We also show that
adding some regularity assumptions one can prove in this way the existence of weakly bound
states for non-symmetric fields with tails as well.

2. Preliminaries

As we have said, we consider a particle of séiﬂiving in a plane and subject to a non-
homogeneous magnetic fieRl perpendicular to the plane. Here and in the next section we
suppose thaB has supportin a compact regi®of R?; later we shall replace this by a suitable
decay requirement. No hypotheses are made here about the field profile; we assume only its
integrability, B € L(X). The corresponding vector potentiél= (A1, A,) lies in the plane

andB = 0; A4, — 9,A;. Throughout the paper we employ natural uniis,2 7 = ¢ = ¢ = 1.

Remark. The assumptions do not include the singular field praile) = 27 F §(x) (a
magnetic string). Although it can be regarded as a squeezing liniit tiélds, the procedure

is non-trivial: as pointed out in [BV] one has at the same time to perform the non-physical
limit ¢ — 2 to preserve the existence of bound states in analogy with the coupling constant
renormalization for the usual two-dimensiodahteraction [AGHH]. We will not discuss this
case here.

The particle dynamics is described by the two-dimensional Pauli Hamiltonian which we
write in the standard form [Th]:
HEP(A) = (=iV = A()? £ g B(x) = DD + 32+ 9) B(x) (2.1)
whereD = (p; — A1) +i(p2 — Az) and the two signs correspond to the two possible spin
orientations. The quantity

F:=i / B(x) d’x (2.2)
2T )

is the total flux measured in the natural ur{@s )2, or the number of flux quanta through
We assume conventionally that> 0, i.e. if the mean field is non-zero it points up. In such a
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case we will be interested primarily in the operaH)Er‘)(A) which describes an electron with
its magnetic moment parallel to the flux.
Next we have to recall a classical result of Aharonov and Casher [AC, Th], which will be
a basic ingredient of our argument in the next section. It states tiia&fN + ¢, ¢ € (0, 1]
for a positive integetv, the operatoﬂ,(,‘)(A) with non-anomalous momerng, = 2, hasN
zero energy eigenvalues. In the gauge= —d.¢, A, = 31¢, Where

1
60 i= 5 [ B Il = yiddy 23)
T Jx
the corresponding eigenfunctions are given explicitly by
xj(x) = €% (x1 +ixp) j=01...,N—1 (2.4)

Itis easy to check thab x; = O for any non-negative integgt but only those functions listed
in (2.4) are square-integrable; this follows from the fact that) = O(|lx|~F*/) as|x| — oo
(cf [AC], [Th, section 7.2]). However, the functiong with j = [F]andj = [F] — 1 (the
latter in the case wherE is a positive integer; as usual, the symbptienotes the integer part)
are zero energy resonances, since they solve the eqdalirdnA)Xj = 0 and do not grow at
large distances.

3. Flux tubes

Now we are in position to state our main result about the existence and number of bound states
of the operator (2.1).

Theorem 1. If B € L' is non-zero and compactly supported, the opera‘fé?)(A) has for

g > 2 at leastl + [F] negative eigenvalues. Moreover,Af = 0 then H,(f’(A) also has a
bound state.

Proof. By the minimax principle, it is sufficient for the first claim to find a subspace of
dimension 1 + F] on which the quadratic form

1
(. HS (A)y) = /R OP@EEx -5 (5~ 2) fR BOO Y ()P dx

is negative. To construct appropriate trial functignswe employ the above mentioned zero-
energy solutions; specifically, we choose

[F]

Va () =Y o (fra()x;(x) +eh;(x)) (3.)

j=0
whereh; € CS(E) will be specified later andz , : R+ — R is a suitable function such
that fr,.(r) = 1 forr := |x| < R, with R chosen in such a way tha is a subset of
Br = {x : |x| < R}. Clearly, it is sufficient to consider coefficient vectarse C**I1 with
|| = 1.

It is straightforward to compute the value of the energy form; with a later purpose in mind

we write it as

[F]
(Voo (D*D +pB)Yo) = Y | &jak{ fR [P0 (0 P

k=0

+e? / (D) () (D) (x) +p{ / (B, 1) (x) dx
> >
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+g/((ﬁjxk+;jhk)3)(x)d2x+82/(Bﬁjhk)(x)d2x“ (3.2)
P} )}

with u = —%(g — 2). We have employed here the prope®y; = 0 of the AC
functions and the fact that; and f; . have by assumption disjoint supports: we have
DXjaj fr«x; = 0insideX so Dy, = ¢X;«;Dh; there, while outsid& we haveh; = 0,
SODY, = DfruSjajx; = S0 x;(p1+ip2) fra = Xa(—ixy +x2)rtfp .

As a warming-up exercise, suppose first that j > 1 holds for all non-zero coefficients
;. Then the corresponding; € L? and we can use the simplest chojte, = 1 ands = 0
in (3.1), obtaining

1
War HS (A ) = —5(&=2) fz B(x) | (x) | dx. (3.3)

Suppose thaty,, B¥,) < 0. Since D*Dvy, = 0, this would imply the inequality
(Yo, (D*D+2B)s,) < 0, butthe operator in parenthesis equalR* giving thus|| D*y, ||? <
0. This is possible only ifD*y, = 0, which is false, because otherwise we would have
2By, = (DD* — D*D)v,, = 0 or B(x)¥, = 0 almost everywhere. Singg, is a product of
a positive function & and a polynomial inc; +ix, it has at mostf] — 1 zeros (recall that
we are assuming < F — 1) and we arrive aB(x) = 0, a.e. which contradicts the assumption.
Consequently, the right-hand side of (3.3) is negative;for 2.

If the linear combination includes; with 0 < F — j < 1, the situation is more
complicated. Since the corresponding AC functions are no loadewe have to modify
the trial function at large distances, but to a sufficiently small degree to make the positive
energy contribution from the tails small. We achieve that by choosing
Koler) } (3.4)
Ko(kR)
whereKj is the Macdonald function and the parametewill be specified later. Sinc&j is
strictly decreasing, the correspondipigwill not be smooth at = R butitremains continuous,
hence it is an admissible trial function. To estimate the first term on the right-hand side of
(3.2), let us compute

KO(KR)Z/ | e ()P dPx = 271/ K1(t)? 1 dt
R2 K

R

fra(r) ;== min {1,

=7 [k?R*K}(kR)* — (k*R? + 1) K1(x R)?]

cf [AS, equation 9.6.26], [PBM, equation 1.12.3.2]. Usin& (&) = Ko(&) + £ 1K1(£) in
combination with the asymptotic expressidigé) = —In& +O(1), K1(§) = £ 1+ O(n¢&)
for ¢ — 0, we find that

Cc
" In(kR)
holds for a positive constaiit and« R small enough. This makes it possible to estimate the
firstterm on the right-hand side of (3.2) using the fact that the funcfigase bounded outside
Bg; recall thaty ; (x) = O(|x|~*/) at large distances and— j > 0.

We will show that[s. B(x)| > iaix (x)|2d2x > 0 also holds in this situation again by

assuming the opposite. Indeed, let usiset= hy; with a real-valued: € C3(%) in (3.1);
then the fourth term on the right-hand side of (3.2) takes the form

[F] 2
28/ Zajxj(x)
x j=0

” fl/ik ” iZ(RZ) < (3.5)

h(x)B(x) d?x.




Anomalous electron trapping 3033

SinceB is non-zero, it is possible to chooseso that the integral is strictly negative. Taking

¢ positive and small enough the sum of the last four terms on the right-hand side of (3.2) with
u = 2 can be made negative, since the the lineat)iterm prevails over the quadratic ones
and the third term is supposedly non-positive. The first term

L1
f | fr ()]
R2 j=0

d’x

2
Z a;x;(x)

is positive, but they;’s are bounded outsidBz and|«| = 1, so it can be made sufficiently
small by a suitable choice af Again using the supersymmetry proped®y,D + 2B = D D*,
we arrive at the absurd conclusion thj@*y, ||? < O.

Hence we can finally take the trial functions (3.1) with, given by (3.4) and = 0,
which yields the estimate

Ve HS (A )

1
iR ohax Il =58 = 2) qu( /2 B(x>|wa<x>|2d2x>. (3.6)
The second term on the right-hand side is strictly negativegif > 2, since
fz B(x) | (x)|?d?x > 0 for anyw in a compact set (surface of the hypersphede= 1),
and it dominates the sum fersmall enough.

To conclude the proof of the first claim, one has to check that the trial functions (3.1) indeed
span a subspace of dimension 1F][ This follows readily from the linear independence of
Vi = freXj, J =0,...,[F]; recall that they;’s are linearly independent and coincide with
Y; atleast in the sefz.

If F = 0, the function¥o(x) := €™ which solvesD*¥y = 0 is also bounded
at Iarge distances and we can apply the analogous _argument to the oﬁéﬁd(ot)

DD* + 3 (g — 2)B. Using a properly chosen functiopy = Sfr.Xo + €h, we can show
that [ B(x)l Fo(x)[2d2x < 0,s0(ho, HS” (A)io) < Oforg > 2 and smalk; henceH " (A)
also has a bound state. |

Remarks. (a) The argument fails only i8 = 0, since therg(x) = Xo(x) = 1 and the matrix

elementg B),, and(B)y, are zero.

(b) Instead of the tail modification (3.4), a simpler oifg () := f(r/R), wheref € Cg°(R+)

is such thatf (1) = 0 for u > 2) was employed in [BEZ2]. The kinetic energy is in this case
[F]

estimated by
’
< ) Z“}X} (x)

for a positiveC. It is clear that one can handle the whole problem in this way, except for the
case of integerF.

1

— & < C ~2F-[F))
2 |, x < CIfI

4. Weakly bound states in two dimensions

Schibdinger operators in dimensions one and two can have bound states for arbitrarily weak
potentials, so the behaviour of the ground state in these cases is of particular interest. The
corresponding asymptotic formulae, known already to Landau and Lifshitz [LL], were analysed
rigorously in [Si, BGS, KI]. If we digress from the subject here, it is because we want to draw
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attention to interesting aspects of the case when the interaction is switched off in a nonlinear
way.

It is sufficient, of course, to describe peculiarities of the nonlinear case. Thus consider a
two-dimensional Sclidinger operator family

HO) =—A+V(Q, x) (4.1)
on L?(R?) with A belonging to an interval [Q.o], where the potentials satisfy

VO, x) = AVi(x) + 22Va(x) + WA, x) (4.2)
with

W, 0] < A3Va(x) (4.3)
and

V; € L™ (R?) N L(R?, (1 +|x|*) d’x) j=123 (4.4)

for somes > 0. By the Birman—Schwinger principle, (4.1) has an eigenvalig = —«? iff
the integral operatok, with the kernel
K} (x, ) = |V, 012 Rolic; x, ) V (&, y)Y?
(whereVY2 .= |V |¥2signV) has an eigenvalue 1; here
1
Ro(k: x, y) = o Kolklx — y]) (4.5)
T
is the kernel of the free resolveft A + «2)~1. A standard trick is then to split the operator
under consideration into two part&;* = L + M’, where the former is rank-one with the
kernel L:(x,y) = —5= [V(A, x)[¥2 Ink V (&, y)¥2, while the latter is regular as — 0+
and, in this limit, has kernel

1 x — |
M. y) == o= VG ) {y +In Ty} V(h, y) 2

wherey is the Euler constant. Now we employ the identity
I+KH) = [1+T+MH L]+ M

where the existence of the inverses on the right-hand side for sufficientlysfolthws from

the assumptions made about the potential in the same way as in [Si]. The spectral problem is
thus reduced to finding a singularity of the square bracket, which leads to an implicit equation.
If we putu := (Ink)~%, it can be written as

1
U= o f VO, 02U+ MO IV, Y2 dx d?y = 0 (4.6)

and used to derive the Taylor expansion of the functien u(1); a weakly bound state with
the eigenvalue (1) = —e?/*® exists iffu(L) < 0 about the origin.
In the linear caseY = A Vy, from here we get the usual expansion

lx — yl

2
u(h) = a / Vi(x) d?x + A / Vi(x) {y +1In } Vi(y) d?x d?y + 013 4.7)
27 472
which shows that a bound state exists/iff’; (x) d?x < 0 (the second term is negative if the
potentialV; is non-trivial and has zero mean [Si]).
For a potential family (4.2) nonlinear inthe sign of [ V1(x) dx is again decisive. An
interesting situation arises, however, if the linear part has zero mean:

/ Vi(x)d?x = 0. (4.8)
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Replacingh vy with (4.2) in (4.6) and expanding in powersofve find that

u(h) = A2 {i / Va(x) d?x + 1 / Vi(x) In|x — y| Va(y) d?x dzy} + 03 (4.9)
2 452

holds in this case (the term with— In 2 splits into a product of one-dimensional integrals and
vanishes, too). We arrive at the following conclusion.

Proposition 1. An operator family (4.1) with the potential satisfying (4.2)—(4.4) and (4.8) has
a weakly bound state provided the leading coefficient in (4.9) is negative. If it is positive, no
bound state exists for small

The formula (4.9) also yields the asymptotic behaviour of the corresponding eigenvalue
e(h) = —e¥“® _We will not inquire about the critical case when the second-order coefficient
also vanishes.

5. The centrally symmetric case

Let us return now to the Pauli operator (2.1) and consider the situation when the field is centrally
symmetric, so the vector potential can be chosen in the symmetric gaddge—= AA(r)e,,
with A(r) = r1 fO’ B(r')r’ dr’. We have introduced the positive parameten order to
discuss how the spectral properties depend on the field strength. We can perform a partial-
wave decomposition and replace (2.1) by the family of operators
2 2

HP ) = —% — % % +V 0, ) VPO, r) = (AA(V) + f) + %gB(r) (5.1)
on L2(R*, rdr). In [BEZ1] these operators were used to discuss the behaviour of an electron
in the magnetic field induced by a localized rotating electric current. We need not insist on
that here, assuming only that the field is locally integrable \Bith) = O(r—2~%) asr — occ.
However, we will be interested primarily in the typical situation for current-induced magnetic
fields, in which the field has zero mean (ife = 0) since the flux lines are closedR?.

It was shown in [BEZ1] under stronger assumptions (involving a smoothness and a faster
decay of the field) that each orbital HamiltoniHlj_) (1) has a bound state farlarge enough,
the critical values for emergence of these states being, of cofxdependent. This result
relies only on the behaviour difl(’)(k, r) about the origin and is thus independent of the fact
that F = 0, the important point being thgt> 2 so the ground-state energy of the harmonic
oscillator obtained in the limit — oo is negative, cf [BEZ1].

The ‘spin-up’ Pauli operatoH,(f)(A) may exhibit less intuitive behaviour as suggested

by theorem 1. IfF = 0 for acompactly supporteéield, thenH,(f) (1) has also a bound state
for any A > 0. Recall that theorem 1 says nothing about the sizZg,df may be quite large.
Inspecting the shape of the effective potentmﬁ) (., r) for the two cases we see that the
states with different spin orientations are supported in different regions: ‘spin-down’ states in
the vicinity of the origin (out of the centrifugal barrier férz£ 0), while the ‘spin-up’ state at
large distances where (for an arbitrary but fixgdhe magnetic field term dominates slightly
over the quadratic one it (%, r), creating a shallow potential well.

Let us examine theveak-coupling behavioun the case of a vanishing total fluk, = 0,
in the field with a tail,B(r) = O(r~27%); no smoothness assumption is made¢ i 0, the
first term inV,* (%, r) is bounded below byw(r) for a suitably chosen positive functian
with compact support (the simplest choicevig) = ¢ ©(r¢p — r) for appropriatec andry).
Since the second term does not contributgfo%ve(i) (A, r) r dr which determines the linear
part of the weak-coupling behaviour, it follows from (4.7) and the minimax principle that
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the discrete spectrum @, (%) is empty fora small enough, when the centrifugal barrier
prevents binding.

The interesting case is, of course, the s-wave part, where the effective potential acquires
the form (4.2) with the last term absent and

Vi(r) = :l:% B(r) Vo(r) = A(r)2. (5.2)

In view of the assumption about the field> A(r) is absolutely continuous ar@(r—1-?),
so the condition (4.4) is satisfied. It remains to evaluate the second integral in (4.9): we have

1
oz [ v Inx =y Vi) Py
T JRZxR?

gZ 1 00 o0 27
= ——/ drrB(r)/ dr’r/B(r’)/ In[r? + 72 — 2rr’ cosp]*/* dg.
4 27 0 0 0

By [GR, 4.224.9] the last integral equals & max(r, r'); we substitute this into the formula
and integrate repeatedly by parts usiB(r) = (rA(r))’. This yields

gZ [e%e] o] gZ 00
——f (/ A(r’)dr/> Br)rdr = — = / dr A(r)?rdr.
4 Jo , 4 Jo

Thus we arrive at the following conclusion.

Proposition 2. Let a spherically symmetric magnetic fieRl be locally integrable with
B(r) = O(r~27%) and vanishing flux/ = 0. Then each of the operatoi§~ (1) with
g > 2 has a negative eigenvalue for sufficiently small

Remarks. (a) The relation (4.9) yields also the asymptotic behaviour of the bound state energy,

)\2 o) -1
e~ — exp{— (E(g2 — 4)/ A(r)?r dr> } (5.3)
0

asi — 0 wherex has the usual meaning (cf [Si]). The leading term is thus the same for both
spin orientations; however, singe# 2, the second theorem of [AC] does not apply and the
degeneracy may be lifted in the next order.

(b) Notice that the argument of the previous section cannot be applied to compactly supported
fields with a non-zero flux, since the corresponding vector potential then has too slow a decay,
A(r) = O@r~1), and consequently; ¢ L(R?, (1 +|x|*) d’x). One may ask whether the
asymptoticsis neverthelesg.) ~ exp(—4/AFg) as follows from a formal application of (4.7).

The example worked outin [CFC] leads to the conclusion thatitis not the case (see equation (17)
of that paper). The question about the asymptotic behaviour thus remains open.

(c) Another open question is whether the bound staféo(écf (1) survives generally fok large

if the field is not compactly supported.

6. Non-symmetric weak coupling revisited

By different means, the result of the previous section complements the zero-flux part of

theorem 1 in the weak-coupling case. While imposing the symmetry requirement, it relaxes the

assumptions on the field decay. Here we want to show that the above argument can be carried

through for non-symmetric fields as well under mild regularity assumptions; the price we shall

pay is to have a weaker form of the asymptotic formula (5.3) only. Specifically, suppose that
|B(y)|

|B(x)| < Cy{x)27° f —— Py < Cpfx) (6.1)
r2 |x — |
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where(x) := +/1 +r2. Then we have the following result.

Proposition 3. Let a magnetic field satisfy the conditions (6.1) for somig, C», § > 0, and
let F = 0. Then each of the operatoﬁﬁ,i) (A) with ¢ > 2 has a negative eigenvalue far
small enough.

Proof. This is based on two observations. The first concerns the ‘mixed’ teAn ¥i in

the Hamiltonian; we shall show that it does not contribute to the energy form for real-valued
functions (the other ‘mixed’ termM - A, vanishes in the gauge we have been adopting). More
specifically, take a real-valuetl € C3(R?), i.e. twice differentiable with compact support.
For the sake of brevity, we write the vector potential components;as —e;;9;¢, where

€ is the two-dimensional Levi-Civita tensor, and employ the convention of summation over
repeated indices; then

WAV = — /R () € 0;0) () (B (x) o
L im / & (8;6)(x) (39 (x) P
2 R—oo B

1 .
=724 / i {056 32 () — (x) (30,07} Px

2 R>oo Jp

2R—>oo 9

Y im ¢ (x) (VY2 (x) - de(x) = 0.
Br

The third line is obtained from the second using integration by parts. Its second term vanishes
because; 9;v2 is symmetric with respect to the interchange of indices and is contracted with
the anti-symmetric symbe);. The remaining term is rewritten by means of the Stokes theorem
and vanishes in the limit sincéy2 has compact support.

The second observation is that the relation between the two integrals which we found in
the proof of proposition 2 by explicit computation in polar coordinates is valid generally. To
see this, let us rewrit¢ A(x)? d?x by means of the first Green identity:

/A(x)2d2x= lim / (Vo (x))? d’x
R2 R—o0 Br
= lim /B {(V-0V)(x) = p(0) (V) (0)} dx

= |im7§ ¢ (x) (Vo) (x) - do(x) — lim / ¢ (x)B(x) dx. (6.2)
R—o0 3B R—o0 Bx

In the second integral we have usé¢ = B, and the first one was rewritten by means of the
Gauss theorem. Our aim is now to use conditions (6.1) to demonstrate that the first integral on
the right-hand side vanishes in the limit. The decay hypothesis about the field yields

1 2 1 2
[P0 < =— [B)I|In|x —ylld%y + — [B(y)| In|x — y|d%
27 Jiy—u<a 21 Jiyxiz1
c c
<= I |z]] o2 + == (x — 2720 In|z| d?z.
2 Ji<a 21 Jig>1

Denote In u := max(0, Inu). Then for anyy > 0 there is a,, > 0 such that

Ins |z] < K, (x — 2)" (L + Iny |x|).
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This follows from the fact that

lim sup In+? 52 <
cemoo (L+1€ = ¢ )" (1 +1n,8)

in the first quadrant, and the function under the limit is continuous there. The second of the
above integrals is thus estimated by

CiK, / —2-8+1 {2
—— 1+ Tdoy.
o 1 +Ins |x]) R2<y> y

Forn < § the last integral is convergent; hence there & & 0 such that¢ (x)| < C’In |x|
as|x| — oo. The second one of the conditions (6.1) implies

Ca2, 1
o (x)

so the first integral on the right-hand side of (6.2)(&0") for anys’ < § and vanishes in the
limit that we have set out to prove. Substituting (2.3)¢oin the second integral, we finally
arrive at the identity

A = [(VP)(x)| <

1
f AX)?dPy = — — B(x) In|x — y| B(y) d?x d?y. (6.3)
R2 27T R2xR2

The conditions (6.1) ensure that both integrals exist. Now it is easy to conclude the proof. We
have

inf o (HSP (1)) = inf {(w, HEO)p): v e D(H,(,i>(,\))}
<int{ (v, HEY009) 1 v € @Y. ¥ = v

= inf o (HSY (W) (6.4)
where
HSP ) = —A+22A(x)2 + 1rgB(v).
The last equality in (6.4) is due to the fact tiiz(R?) is a core ofHNIE,i) (A). Itis now sufficient
to apply proposition 1 to the operat&f,i) (1) and to employ the identity (6.3). |

Remark. In view of the estimate used in the proof, relation (5.3) is now replaced by the
asymptotic inequality

% -
e®n) < — exp{— (E (g% — %) /RZ A(x)2d2x> } (6.5)

The question as to whether the right-hand side is still the lower bound remains open.

Note added in proof In a recent paper [W] Weidl discusses the discrete spectrum coming from matrix-potential
perturbations of the Aharonos—Casher states.
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