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Received 22 December 1998

Abstract. We consider an electron with an anomalous magnetic momentg > 2 confined to a
plane and interacting with a non-zero magnetic fieldB perpendicular to the plane. We show that
if B has compact support and the magnetic flux in natural units isF > 0, the corresponding
Pauli Hamiltonian has at least 1 + [F ] bound states, without making any assumptions about the
field profile. Furthermore, in the zero-flux case there is a pair of bound states with opposite spin
orientations. Using a Birman–Schwinger technique, we extend the last claim to a weak rotationally
symmetric field withB(r) = O(r−2−δ), thus correcting a recent result. Finally, we show that under
mild regularity assumptions existence of the bound states can also be proved for non-symmetric
fields with tails.

1. Introduction

The interaction of electrons with a localized magnetic field has been a subject of interest for a
long time. It was observed recently that a magnetic flux tube can bind charged particles with
anomalous magnetic momentg > 2. An example of such a particle is the electron, which has
g = 2.0023.

The effect was observed first in simple examples [BV, CFC, Mo], such as a cylindrical tube
with a field which is either homogeneous or supported by the tube surface. The same behaviour
was then demonstrated for any rotationally invariant fieldB(r) with compact support, and
which does not change sign [CC]. In the next step the symmetry condition was removed and the
positivity requirement weakened [BEZ2]. The main aim of the present paper is to complete this
process by showing that bound states exist for any (non-trivial) compactly supported field and
their number is controlled by the number of flux quanta: the corresponding Pauli Hamiltonian
will be shown to have at least 1 + [F ] negative eigenvalues, whereF is the value of the flux
through the tube in natural units.

This improvement is made possible by a pair of new tools. First of all, the supersymmetry
properties of the Pauli operators allow us to show that the matrix element of the field appearing
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in the sufficient condition of [BEZ2] in fact has a definite sign. This trick will be combined with
a more sophisticated variational estimate, which enables us to treat the integer-flux situation
on the same footing as the other cases. In particular, we will be able to demonstrate in this
way that for a non-zeroB a bound state due to an excess magnetic moment exists even if the
flux is zero. More than that, an analogous argument shows that in this situation the field binds
electrons withbothspin orientations.

While the proof of the last result requires a compact support and does not cover fields
with tails extending to infinity, it raises a question about a claim made in a recent paper by
some of us [BEZ1]. It was said there that a system with a particular rotationally symmetric
field induced by an electric current vortex has no bound states for weak currents. This is not
correct: the statement is true for higher partial waves only, while the s-wave part in reality has
a non-trivial spectrum for any non-zero current.

The error is subtle and—we hope—instructive: it illustrates well the fine nature of weakly
bound states of Schrödinger operators in one and two dimensions. The point is that caution
is needed when the coupling is switched offnonlinearly: the case in question represents an
example of a two-dimensional Schrödinger operator with a potential which has apositive mean
for any non-zero coupling constant while still having a bound state.

To set things straight, in sections 4, 5 and 6 we discuss the weak field, zero-flux case
in detail by performing the corresponding Birman–Schwinger analysis to second order. For
centrally symmetric fields it yieldsg > 2 as a sufficient condition for the existence of bound
states, and provides an asymptotic formula for the bound-state energy. We also show that
adding some regularity assumptions one can prove in this way the existence of weakly bound
states for non-symmetric fields with tails as well.

2. Preliminaries

As we have said, we consider a particle of spin1
2 living in a plane and subject to a non-

homogeneous magnetic fieldB perpendicular to the plane. Here and in the next section we
suppose thatB has support in a compact region6 ofR2; later we shall replace this by a suitable
decay requirement. No hypotheses are made here about the field profile; we assume only its
integrability,B ∈ L1(6). The corresponding vector potentialA = (A1, A2) lies in the plane
andB = ∂1A2− ∂2A1. Throughout the paper we employ natural units, 2m = h̄ = c = e = 1.

Remark. The assumptions do not include the singular field profileB(x) = 2πF δ(x) (a
magnetic string). Although it can be regarded as a squeezing limit ofL1 fields, the procedure
is non-trivial: as pointed out in [BV] one has at the same time to perform the non-physical
limit g → 2 to preserve the existence of bound states in analogy with the coupling constant
renormalization for the usual two-dimensionalδ interaction [AGHH]. We will not discuss this
case here.

The particle dynamics is described by the two-dimensional Pauli Hamiltonian which we
write in the standard form [Th]:

H
(±)
P (A) = (−i∇ − A(x))2 ± 1

2g B(x) = D∗D + 1
2(2± g)B(x) (2.1)

whereD := (p1 − A1) + i(p2 − A2) and the two signs correspond to the two possible spin
orientations. The quantity

F := 1

2π

∫
6

B(x) d2x (2.2)

is the total flux measured in the natural units(2π)−1, or the number of flux quanta through6.
We assume conventionally thatF > 0, i.e. if the mean field is non-zero it points up. In such a
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case we will be interested primarily in the operatorH
(−)
P (A) which describes an electron with

its magnetic moment parallel to the flux.
Next we have to recall a classical result of Aharonov and Casher [AC, Th], which will be

a basic ingredient of our argument in the next section. It states that ifF = N + ε, ε ∈ (0, 1]
for a positive integerN , the operatorH(−)

P (A) with non-anomalous moment,g = 2, hasN
zero energy eigenvalues. In the gaugeA1 = −∂2φ, A2 = ∂1φ, where

φ(x) := 1

2π

∫
6

B(y) ln |x − y| d2y (2.3)

the corresponding eigenfunctions are given explicitly by

χj (x) = e−φ(x) (x1 + ix2)
j j = 0, 1, . . . , N − 1. (2.4)

It is easy to check thatDχj = 0 for any non-negative integerj , but only those functions listed
in (2.4) are square-integrable; this follows from the fact thatχj (x) = O(|x|−F+j ) as|x| → ∞
(cf [AC], [Th, section 7.2]). However, the functionsχj with j = [F ] andj = [F ] − 1 (the
latter in the case whereF is a positive integer; as usual, the symbol [·] denotes the integer part)
are zero energy resonances, since they solve the equationH

(−)
P (A)χj = 0 and do not grow at

large distances.

3. Flux tubes

Now we are in position to state our main result about the existence and number of bound states
of the operator (2.1).

Theorem 1. If B ∈ L1 is non-zero and compactly supported, the operatorH
(−)
P (A) has for

g > 2 at least1 + [F ] negative eigenvalues. Moreover, ifF = 0 thenH(+)
P (A) also has a

bound state.

Proof. By the minimax principle, it is sufficient for the first claim to find a subspace of
dimension 1 + [F ] on which the quadratic form

(ψ,H
(−)
P (A)ψ) =

∫
R2
|(Dψ)(x)|2 d2x − 1

2
(g − 2)

∫
R2
B(x)|ψ(x)|2 d2x

is negative. To construct appropriate trial functionsψα we employ the above mentioned zero-
energy solutions; specifically, we choose

ψα(x) =
[F ]∑
j=0

αj
(
fR,κ(r)χj (x) + εhj (x)

)
(3.1)

wherehj ∈ C2
0(6) will be specified later andfR,κ : R+ → R is a suitable function such

that fR,κ(r) = 1 for r := |x| 6 R, with R chosen in such a way that6 is a subset of
BR := {x : |x| 6 R}. Clearly, it is sufficient to consider coefficient vectorsα ∈ C1+[F ] with
|α| = 1.

It is straightforward to compute the value of the energy form; with a later purpose in mind
we write it as

(ψα, (D
∗D +µB)ψα) =

[F ]∑
j,k=0

ᾱjαk

{∫
R2

∣∣f ′R,κ(r)∣∣2(χ̄jχk)(x) d2x

+ ε2
∫
6

(Dhj )(x)(Dhk)(x) d2x +µ

[∫
6

(Bχ̄jχk)(x) d2x
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+ε
∫
6

((h̄jχk + χ̄jhk)B)(x) d2x + ε2
∫
6

(Bh̄jhk)(x) d2x

]}
(3.2)

with µ = − 1
2 (g − 2). We have employed here the propertyDχj = 0 of the AC

functions and the fact thathj and f ′R,κ have by assumption disjoint supports: we have
D6jαjfR,κχj = 0 inside6 soDψα = ε6jαjDhj there, while outside6 we havehj = 0,
soDψα = DfR,κ6jαjχj = 6jαjχj (p1 + ip2)fR,κ = χα(−ix1 + x2)r

−1f ′R,κ .
As a warming-up exercise, suppose first thatF − j > 1 holds for all non-zero coefficients

αj . Then the correspondingχj ∈ L2 and we can use the simplest choicefR,κ = 1 andε = 0
in (3.1), obtaining

(ψα,H
(−)
P (A)ψα) = −1

2
(g − 2)

∫
6

B(x)|ψα(x)|2 d2x. (3.3)

Suppose that(ψα, Bψα) 6 0. SinceD∗Dψα = 0, this would imply the inequality
(ψα, (D

∗D+2B)ψα) 6 0, but the operator in parenthesis equalsDD∗ giving thus‖D∗ψα‖2 6
0. This is possible only ifD∗ψα = 0, which is false, because otherwise we would have
2Bψα = (DD∗ −D∗D)ψα = 0 orB(x)ψα = 0 almost everywhere. Sinceψα is a product of
a positive function e−φ(x) and a polynomial inx1 + ix2, it has at most [F ]− 1 zeros (recall that
we are assumingj < F −1) and we arrive atB(x) = 0, a.e. which contradicts the assumption.
Consequently, the right-hand side of (3.3) is negative forg > 2.

If the linear combination includesαj with 0 6 F − j 6 1, the situation is more
complicated. Since the corresponding AC functions are no longerL2, we have to modify
the trial function at large distances, but to a sufficiently small degree to make the positive
energy contribution from the tails small. We achieve that by choosing

fR,κ(r) := min

{
1,

K0(κr)

K0(κR)

}
(3.4)

whereK0 is the Macdonald function and the parameterκ will be specified later. SinceK0 is
strictly decreasing, the correspondingψα will not be smooth atr = R but it remains continuous,
hence it is an admissible trial function. To estimate the first term on the right-hand side of
(3.2), let us compute

K0(κR)
2
∫
R2
|f ′R,κ(r)|2 d2x = 2π

∫ ∞
κR

K1(t)
2 t dt

= π [κ2R2K ′1(κR)
2 − (κ2R2 + 1

)
K1(κR)

2
]

cf [AS, equation 9.6.26], [PBM, equation 1.12.3.2]. Using−K ′1(ξ) = K0(ξ) + ξ−1K1(ξ) in
combination with the asymptotic expressionsK0(ξ) = − ln ξ +O(1),K1(ξ) = ξ−1 +O(ln ξ)
for ξ → 0, we find that∥∥f ′R,κ∥∥2

L2(R2)
< − C

ln(κR)
(3.5)

holds for a positive constantC andκR small enough. This makes it possible to estimate the
first term on the right-hand side of (3.2) using the fact that the functionsχj are bounded outside
BR; recall thatχj (x) = O(|x|−F+j ) at large distances andF − j > 0.

We will show that
∫
6
B(x)

∣∣∑
j αjχj (x)

∣∣2 d2x > 0 also holds in this situation again by
assuming the opposite. Indeed, let us sethj := hχj with a real-valuedh ∈ C2

0(6) in (3.1);
then the fourth term on the right-hand side of (3.2) takes the form

2ε
∫
6

∣∣∣∣ [F ]∑
j=0

αjχj (x)

∣∣∣∣2h(x)B(x) d2x.
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SinceB is non-zero, it is possible to chooseh so that the integral is strictly negative. Taking
ε positive and small enough the sum of the last four terms on the right-hand side of (3.2) with
µ = 2 can be made negative, since the the linear (inε) term prevails over the quadratic ones
and the third term is supposedly non-positive. The first term∫

R2

∣∣f ′R,κ(r)∣∣2
∣∣∣∣∣ [F ]∑
j=0

αjχj (x)

∣∣∣∣∣
2

d2x

is positive, but theχj ’s are bounded outsideBR and|α| = 1, so it can be made sufficiently
small by a suitable choice ofκ. Again using the supersymmetry property,D∗D + 2B = DD∗,
we arrive at the absurd conclusion that‖D∗ψα‖2 < 0.

Hence we can finally take the trial functions (3.1) withfR,κ given by (3.4) andε = 0,
which yields the estimate

(ψα,H
(−)
P (A)ψα)

< − C

ln(κR)
max

06j6[F ]
‖χj‖2∞−

1

2
(g − 2)min

|α|=1

(∫
6

B(x)|ψα(x)|2 d2x

)
. (3.6)

The second term on the right-hand side is strictly negative ifg > 2, since∫
6
B(x) |ψα(x)|2 d2x > 0 for anyα in a compact set (surface of the hypersphere|α| = 1),

and it dominates the sum forκ small enough.
To conclude the proof of the first claim, one has to check that the trial functions (3.1) indeed

span a subspace of dimension 1 + [F ]. This follows readily from the linear independence of
ψj := fR,κχj , j = 0, . . . , [F ]; recall that theχj ’s are linearly independent and coincide with
ψj at least in the setBR.

If F = 0, the functionχ̃0(x) := eφ(x) which solvesD∗χ̃0 = 0 is also bounded
at large distances and we can apply the analogous argument to the operatorH

(+)
P (A) =

DD∗ + 1
2 (g − 2)B. Using a properly chosen functioñψ0 = fR,κ χ̃0 + εh, we can show

that
∫
6
B(x)|χ̃0(x)|2 d2x < 0, so(ψ̃0, H

(+)
P (A)ψ̃0) < 0 for g > 2 and smallκ; henceH(+)

P (A)

also has a bound state. �

Remarks. (a) The argument fails only ifB = 0, since thenχ0(x) = χ̃0(x) = 1 and the matrix
elements〈B〉χ0 and〈B〉χ̃0 are zero.
(b) Instead of the tail modification (3.4), a simpler one (fR(r) := f (r/R), wheref ∈ C∞0 (R+)

is such thatf (u) = 0 for u > 2) was employed in [BEZ2]. The kinetic energy is in this case
estimated by

1

R2

∫
R2

∣∣∣∣f ′( rR
)∣∣∣∣2

∣∣∣∣∣ [F ]∑
j=0

αjχj (x)

∣∣∣∣∣
2

d2x 6 C‖f ′‖2∞R−2(F−[F ])

for a positiveC. It is clear that one can handle the whole problem in this way, except for the
case of integerF .

4. Weakly bound states in two dimensions

Schr̈odinger operators in dimensions one and two can have bound states for arbitrarily weak
potentials, so the behaviour of the ground state in these cases is of particular interest. The
corresponding asymptotic formulae, known already to Landau and Lifshitz [LL], were analysed
rigorously in [Si, BGS, Kl]. If we digress from the subject here, it is because we want to draw
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attention to interesting aspects of the case when the interaction is switched off in a nonlinear
way.

It is sufficient, of course, to describe peculiarities of the nonlinear case. Thus consider a
two-dimensional Schrödinger operator family

H(λ) = −1 + V (λ, x) (4.1)

onL2(R2) with λ belonging to an interval [0, λ0], where the potentials satisfy

V (λ, x) = λV1(x) + λ2V2(x) +W(λ, x) (4.2)

with

|W(λ, x)| 6 λ3V3(x) (4.3)

and

Vj ∈ L1+δ(R2) ∩ L(R2, (1 + |x|δ) d2x) j = 1, 2, 3 (4.4)

for someδ > 0. By the Birman–Schwinger principle, (4.1) has an eigenvalueε(λ) = −κ2 iff
the integral operatorKκ with the kernel

Kλ
κ (x, y) = |V (λ, x)|1/2R0(κ; x, y) V (λ, y)1/2

(whereV 1/2 := |V |1/2 signV ) has an eigenvalue−1; here

R0(κ; x, y) = 1

2π
K0(κ|x − y|) (4.5)

is the kernel of the free resolvent(−1 + κ2)−1. A standard trick is then to split the operator
under consideration into two parts,Kλ

κ = Lλκ + Mλ
κ , where the former is rank-one with the

kernelLλκ(x, y) = − 1
2π |V (λ, x)|1/2 ln κ V (λ, y)1/2, while the latter is regular asκ → 0+

and, in this limit, has kernel

Mλ
0 (x, y) = −

1

2π
|V (λ, x)|1/2

{
γ + ln

|x − y|
2

}
V (λ, y)1/2

whereγ is the Euler constant. Now we employ the identity

(I +Kλ
κ )
−1 = [I + (I +Mλ

κ )
−1Lλκ

]−1
(I +Mλ

κ )
−1

where the existence of the inverses on the right-hand side for sufficiently smallλ follows from
the assumptions made about the potential in the same way as in [Si]. The spectral problem is
thus reduced to finding a singularity of the square bracket, which leads to an implicit equation.
If we putu := (ln κ)−1, it can be written as

u− 1

2π

∫
V (λ, x)1/2 (I +Mλ

κ )
−1(x, y) |V (λ, y)|1/2 d2x d2y = 0 (4.6)

and used to derive the Taylor expansion of the functionλ 7→ u(λ); a weakly bound state with
the eigenvalueε(λ) = −e2/u(λ) exists iffu(λ) < 0 about the origin.

In the linear case,V = λV1, from here we get the usual expansion

u(λ) = λ

2π

∫
V1(x) d2x +

λ2

4π2

∫
V1(x)

{
γ + ln

|x − y|
2

}
V1(y) d2x d2y +O(λ3) (4.7)

which shows that a bound state exists iff
∫
V1(x) d2x 6 0 (the second term is negative if the

potentialV1 is non-trivial and has zero mean [Si]).
For a potential family (4.2) nonlinear inλ the sign of

∫
V1(x) d2x is again decisive. An

interesting situation arises, however, if the linear part has zero mean:∫
V1(x) d2x = 0. (4.8)
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ReplacingλV1 with (4.2) in (4.6) and expanding in powers ofλ we find that

u(λ) = λ2

{
1

2π

∫
V2(x) d2x +

1

4π2

∫
V1(x) ln |x − y|V1(y) d2x d2y

}
+O(λ3) (4.9)

holds in this case (the term withγ − ln 2 splits into a product of one-dimensional integrals and
vanishes, too). We arrive at the following conclusion.

Proposition 1. An operator family (4.1) with the potential satisfying (4.2)–(4.4) and (4.8) has
a weakly bound state provided the leading coefficient in (4.9) is negative. If it is positive, no
bound state exists for smallλ.

The formula (4.9) also yields the asymptotic behaviour of the corresponding eigenvalue
ε(λ) = −e2/u(λ). We will not inquire about the critical case when the second-order coefficient
also vanishes.

5. The centrally symmetric case

Let us return now to the Pauli operator (2.1) and consider the situation when the field is centrally
symmetric, so the vector potential can be chosen in the symmetric gauge,A(x) = λA(r)eϕ ,
with A(r) = r−1

∫ r
0 B(r

′) r ′ dr ′. We have introduced the positive parameterλ in order to
discuss how the spectral properties depend on the field strength. We can perform a partial-
wave decomposition and replace (2.1) by the family of operators

H
(±)
` (λ) = − d2

dr2
− 1

r

d

dr
+ V (±)` (λ, r) V

(±)
` (λ, r) :=

(
λA(r) +

`

r

)2

± λ
2
gB(r) (5.1)

onL2(R+, r dr). In [BEZ1] these operators were used to discuss the behaviour of an electron
in the magnetic field induced by a localized rotating electric current. We need not insist on
that here, assuming only that the field is locally integrable withB(r) = O(r−2−δ) asr →∞.
However, we will be interested primarily in the typical situation for current-induced magnetic
fields, in which the field has zero mean (i.e.F = 0) since the flux lines are closed inR3.

It was shown in [BEZ1] under stronger assumptions (involving a smoothness and a faster
decay of the field) that each orbital HamiltonianH(−)

` (λ) has a bound state forλ large enough,
the critical values for emergence of these states being, of course,`-dependent. This result
relies only on the behaviour ofV (−)` (λ, r) about the origin and is thus independent of the fact
thatF = 0, the important point being thatg > 2 so the ground-state energy of the harmonic
oscillator obtained in the limitλ→∞ is negative, cf [BEZ1].

The ‘spin-up’ Pauli operatorH(+)
P (λ) may exhibit less intuitive behaviour as suggested

by theorem 1. IfF = 0 for acompactly supportedfield, thenH(+)
P (λ) has also a bound state

for anyλ > 0. Recall that theorem 1 says nothing about the size of6, it may be quite large.
Inspecting the shape of the effective potentialsV

(±)
` (λ, r) for the two cases we see that the

states with different spin orientations are supported in different regions: ‘spin-down’ states in
the vicinity of the origin (out of the centrifugal barrier for` 6= 0), while the ‘spin-up’ state at
large distances where (for an arbitrary but fixedλ) the magnetic field term dominates slightly
over the quadratic one inV (+)0 (λ, r), creating a shallow potential well.

Let us examine theweak-coupling behaviourin the case of a vanishing total flux,F = 0,
in the field with a tail,B(r) = O(r−2−δ); no smoothness assumption is made. If` 6= 0, the
first term inV (±)` (λ, r) is bounded below byλv(r) for a suitably chosen positive functionv
with compact support (the simplest choice isv(r) = c 2(r0 − r) for appropriatec andr0).
Since the second term does not contribute to

∫∞
0 V

(±)
` (λ, r) r dr which determines the linear

part of the weak-coupling behaviour, it follows from (4.7) and the minimax principle that
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the discrete spectrum ofH(±)
` (λ) is empty forλ small enough, when the centrifugal barrier

prevents binding.
The interesting case is, of course, the s-wave part, where the effective potential acquires

the form (4.2) with the last term absent and

V1(r) = ±g
2
B(r) V2(r) = A(r)2. (5.2)

In view of the assumption about the field,r 7→ A(r) is absolutely continuous andO(r−1−δ),
so the condition (4.4) is satisfied. It remains to evaluate the second integral in (4.9): we have

1

4π2

∫
R2×R2

V1(x) ln |x − y|V1(y) d2x d2y

= g2

4

1

2π

∫ ∞
0

dr rB(r)
∫ ∞

0
dr ′ r ′B(r ′)

∫ 2π

0
ln[r2 + r ′2 − 2rr ′ cosϕ]1/2 dϕ.

By [GR, 4.224.9] the last integral equals 2π ln max(r, r ′); we substitute this into the formula
and integrate repeatedly by parts usingrB(r) = (rA(r))′. This yields

−g
2

4

∫ ∞
0

(∫ ∞
r

A(r ′) dr ′
)
B(r) r dr = − g

2

4

∫ ∞
0

dr A(r)2 r dr.

Thus we arrive at the following conclusion.

Proposition 2. Let a spherically symmetric magnetic fieldB be locally integrable with
B(r) = O(r−2−δ) and vanishing flux,F = 0. Then each of the operatorsH(±)

0 (λ) with
g > 2 has a negative eigenvalue for sufficiently smallλ.

Remarks. (a) The relation (4.9) yields also the asymptotic behaviour of the bound state energy,

ε(±)(λ) ≈ −exp

{
−
(
λ2

8
(g2 − 4)

∫ ∞
0
A(r)2 r dr

)−1
}

(5.3)

asλ→ 0 where≈ has the usual meaning (cf [Si]). The leading term is thus the same for both
spin orientations; however, sinceg 6= 2, the second theorem of [AC] does not apply and the
degeneracy may be lifted in the next order.
(b) Notice that the argument of the previous section cannot be applied to compactly supported
fields with a non-zero flux, since the corresponding vector potential then has too slow a decay,
A(r) = O(r−1), and consequentlyV1 6∈ L(R2, (1 + |x|δ) d2x). One may ask whether the
asymptotics is neverthelessε(λ) ≈ exp(−4/λFg)as follows from a formal application of (4.7).
The example worked out in [CFC] leads to the conclusion that it is not the case (see equation (17)
of that paper). The question about the asymptotic behaviour thus remains open.
(c) Another open question is whether the bound state ofH

(±)
0 (λ) survives generally forλ large

if the field is not compactly supported.

6. Non-symmetric weak coupling revisited

By different means, the result of the previous section complements the zero-flux part of
theorem 1 in the weak-coupling case. While imposing the symmetry requirement, it relaxes the
assumptions on the field decay. Here we want to show that the above argument can be carried
through for non-symmetric fields as well under mild regularity assumptions; the price we shall
pay is to have a weaker form of the asymptotic formula (5.3) only. Specifically, suppose that

|B(x)| 6 C1〈x〉−2−δ
∫
R2

|B(y)|
|x − y| d

2y 6 C2〈x〉−1−δ (6.1)
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where〈x〉 :=
√

1 + r2. Then we have the following result.

Proposition 3. Let a magnetic fieldB satisfy the conditions (6.1) for someC1, C2, δ > 0, and
let F = 0. Then each of the operatorsH(±)

P (λ) with g > 2 has a negative eigenvalue forλ
small enough.

Proof. This is based on two observations. The first concerns the ‘mixed’ term 2iA · ∇ in
the Hamiltonian; we shall show that it does not contribute to the energy form for real-valued
functions (the other ‘mixed’ term, i∇ ·A, vanishes in the gauge we have been adopting). More
specifically, take a real-valuedψ ∈ C2

0(R2), i.e. twice differentiable with compact support.
For the sake of brevity, we write the vector potential components asAi = −εij ∂jφ, where
ε is the two-dimensional Levi–Civita tensor, and employ the convention of summation over
repeated indices; then

(ψ,A · ∇ψ) = −
∫
R2
ψ(x) εij (∂jφ)(x) (∂iψ)(x) d2x

= − 1

2
lim
R→∞

∫
BR
εij (∂jφ)(x) (∂iψ

2)(x) d2x

= − 1

2
lim
R→∞

∫
BR
εij
{
(∂j (φ ∂iψ

2))(x)− φ(x) (∂i∂jψ2)
}

d2x

= 1

2
lim
R→∞

∮
∂BR

φ(x) (∇ψ2)(x) · d`(x) = 0.

The third line is obtained from the second using integration by parts. Its second term vanishes
because∂j ∂iψ2 is symmetric with respect to the interchange of indices and is contracted with
the anti-symmetric symbolεij . The remaining term is rewritten by means of the Stokes theorem
and vanishes in the limit since∇ψ2 has compact support.

The second observation is that the relation between the two integrals which we found in
the proof of proposition 2 by explicit computation in polar coordinates is valid generally. To
see this, let us rewrite

∫
A(x)2 d2x by means of the first Green identity:∫

R2
A(x)2 d2x = lim

R→∞

∫
BR
(∇φ(x))2 d2x

= lim
R→∞

∫
BR

{
(∇ · (φ∇φ))(x)− φ(x) (∇2φ)(x)

}
d2x

= lim
R→∞

∮
∂BR

φ(x) (∇φ)(x) · dσ(x)− lim
R→∞

∫
BR
φ(x)B(x) d2x. (6.2)

In the second integral we have used4φ = B, and the first one was rewritten by means of the
Gauss theorem. Our aim is now to use conditions (6.1) to demonstrate that the first integral on
the right-hand side vanishes in the limit. The decay hypothesis about the field yields

|φ(x)| 6 1

2π

∫
|y−x|61

|B(y)| | ln |x − y|| d2y +
1

2π

∫
|y−x|>1

|B(y)| ln |x − y| d2y

6 C1

2π

∫
|z|61
| ln |z|| d2z +

C1

2π

∫
|z|>1
〈x − z〉−2−δ ln |z| d2z.

Denote ln+ u := max(0, ln u). Then for anyη > 0 there is aKη > 0 such that

ln+ |z| < Kη 〈x − z〉η (1 + ln+ |x|).
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This follows from the fact that

lim sup
ζ,ξ→∞

ln+ ζ(
1 + |ξ − ζ |2)η/2 (1 + ln+ ξ)

6 1

in the first quadrant, and the function under the limit is continuous there. The second of the
above integrals is thus estimated by

C1Kη

2π
(1 + ln+ |x|)

∫
R2
〈y〉−2−δ+η d2y.

Forη < δ the last integral is convergent; hence there is aC ′ > 0 such that|φ(x)| 6 C ′ ln |x|
as|x| → ∞. The second one of the conditions (6.1) implies

|A(x)| = |(∇φ)(x)| 6 C2

2π
〈x〉−1−δ

so the first integral on the right-hand side of (6.2) is o(R−δ
′
) for anyδ′ < δ and vanishes in the

limit that we have set out to prove. Substituting (2.3) forφ in the second integral, we finally
arrive at the identity∫

R2
A(x)2 d2x = − 1

2π

∫
R2×R2

B(x) ln |x − y|B(y) d2x d2y. (6.3)

The conditions (6.1) ensure that both integrals exist. Now it is easy to conclude the proof. We
have

inf σ
(
H
(±)
P (λ)

) = inf
{(
ψ,H

(±)
P (λ)ψ

)
: ψ ∈ D(H(±)

P (λ)
)}

6 inf
{ (
ψ,H

(±)
P (λ)ψ

)
: ψ ∈ C2

0(R
2) , ψ = ψ̄

}
= inf σ

(
H̃
(±)
P (λ)

)
(6.4)

where

H̃
(±)
P (λ) := −1 + λ2A(x)2 ± 1

2λgB(x).

The last equality in (6.4) is due to the fact thatC2
0(R2) is a core ofH̃ (±)

P (λ). It is now sufficient
to apply proposition 1 to the operator̃H(±)

P (λ) and to employ the identity (6.3). �

Remark. In view of the estimate used in the proof, relation (5.3) is now replaced by the
asymptotic inequality

ε(±)(λ) . − exp

{
−
(
λ2

16π
(g2 − 4)

∫
R2
A(x)2 d2x

)−1
}
. (6.5)

The question as to whether the right-hand side is still the lower bound remains open.

Note added in proof. In a recent paper [W] Weidl discusses the discrete spectrum coming from matrix-potential
perturbations of the Aharonos–Casher states.
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